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Abstract. We study the transition by breaking of analyticity on a variation of the Frenkel- 
Kontorova ( FK)  model with two sublattices, where a parameter E simulates the role of 
the electric field in certain incommensurate structures. For the incommensurate ground 
states, the polarisation response S ( E )  at fixed incommensurability ratio ( and as a function 
of the electric field E is found to be a smooth analytic curve when the parameter K which 
characterises the coupling to the lattice is small enough, while it becomes the sum of a 
smooth analytic curve and a devil’s staircase for larger values of K. The change between 
these two regimes corresponds to the crossing of the critical line K,( E, 5)  of the transition 
by breaking of analyticity. I t  is shown that at fixed 5 irrational, this curve is not differentiable 
at an infinite set of cusps which form a Cantor set. These cusps are shown to be the 
terminating points of the lines corresponding to the edges of the plateaux of the devil’s 
staircase S ( E )  at fixed (. 

1. Introduction 

A variation of the one-dimensional discrete Frenkel-Kontorova ( FK) model has been 
recently studied (Aubry et a1 1985). This model involves an additional term which 
breaks the symmetry operation that transforms the sublattice of atoms with even indices 
into the sublattice of atoms with odd indices. This term has been introduced in order 
to simulate an applied external constant electric field on thiourea which also breaks 
a symmetry between two equivalent sublattices (Durand et a1 1984) (for a review, see 
Denoyer and Currat (1986)). The model was chosen to be one dimensional because 
the direction of the wavevector of the incommensurate modulation in thiourea is the 
simple crystallographic axis b. I t  is represented by a classical elastic chain of N atoms 
subjected to both a periodic potential and a staggered field. The free energy of this 
model at 0 K is 

@(b ,H=C [ 1 / 2 ( U / + l  - U I ) z - p ( U I + I  -U,)+KV(U,)+(-l)’Eu,] 
I 

=c (U/+,, U,) (1) 
I 

where U, is the position of the j th  atom, p is a tensile force, K is the amplitude of 
the periodic potential which creates the incommensurate modulation ( 2 a  is its period) 
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and E is the symmetry breaking term, which plays the role of the electric field in 
thiourea-which from now on we will call the ‘electric field’. In  the physical system, 
u2, and U>,+, represent the phase of the incommensurate modulation on the even and 
odd sublattices in the j t h  unit cell, respectively. 

The exact phase diagram for the ground states of this model has then been calculated 
in the case where the potential V is piecewise parabolic of the form 

and the atoms of the second sublattice are subjected to the same periodic potential as 
the atoms of the first but shifted by half a period (figure l (a)) .  

Figure 1. Scheme of model (1) representing a one-dimensional elastic chain of atoms 
subjected to a staggered electric field and ( a )  the periodic piecewise parabolic potential 
of Aubry et a /  (1985) or ( b )  a cosine potential. 

A piecewise parabolic potential is indeed a good approximation for a smooth 
sinusoidal or quasi-sinusoidal periodic potential with a large amplitude K because 
then the atoms essentially lie in the regions close to its minima, where the periodic 
potential is practically parabolic (figure 1 ( b ) ) .  However it has been already pointed 
out in earlier papers that a piecewise parabolic potential is not appropriate for the 
description of situations where the amplitude of V ( x )  is small. This is due to the fact 
that the existence of singularities where V ( x )  is not differentiable forbids the existence 
of incommensurate ‘analytic’ ground states. The physical consequence is that the 
ground states of model (1) where V ( x )  is a piecewise parabolic potential are always 
pinned by the lattice, while when V ( x )  is an  analytic potential which has a small 
amplitude, the incommensurate ground states can become unpinned and there is a 
gapless phason mode which is the phonon corresponding to the zero-frequency vibra- 
tions of the phase of the incommensurate structure. In addition, in the first case the 
devil’s staircases (Mandelbrot 1977, 1982) which are found are always complete (Aubry 
1978) while in the second case they may become incomplete (Aubry 1978, 1980a, b). 
Briefly, we recall that for a complete (incomplete) devil’s staircase the total measure 
of the steps is (not) the full Lebesgue measure. A ‘harmless’ staircase has a finite 
number of steps (Villain and Gordon 1980, Axel and  Aubry 1981). 

Therefore, the analysis and  the calculations of the phase diagram of model (1) with 
the approximation of a piecewise parabolic potential remain qualitatively valid for an 
analytic potential in the parameter region where the incommensurate ground states 
are non-analytic, which mathematically means that the configuration coordinates vary 
non-analytically with respect to the phase of the wave modulation or, physically, that 
the ground states are pinned by the lattice. In this paper, we study also the parameter 
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region where the ground states are analytic. We find as expected that a transition by 
breaking of analyticity occurs for the incommensurate ground states of this model 
when the amplitude K of the analytic periodic potential V ( x )  increases. We also find 
an  important qualitative change of the polarisation response to an  electric field in the 
analytic region. Instead of a polarisation S ( E )  function of the electric field E which 
is the sum of an analytic part (more precisely a linear curve) and of a devil’s staircase, 
this curve S (  E )  simply becomes a smooth analytic curve. We analyse the transition 
between these two regimes. The curve K,(E, 5) which yields the critical value of the 
potential amplitude K where the transition by breaking of analyticity occurs, as a 
function of the electric field E, is studied for a fixed incommensurability ratio or 
rotation number. We find that this curve exhibits an unusual behaviour with an infinite 
set of cusps where it is not differentiable. The set of points corresponding to these 
cusps is likely to have a Cantor set structure. 

As for the FK model, our study here is done with the simple analytic periodic 
potential: 

V ( x )  = ( 1  -cos x )  ( 2 )  

where the period 2a is now equal to 27r. 

2. Modified standard map 

The study of the transition by breaking of analyticity is done by introducing an 
associated map in the same way as for the FK model (Aubry 1978, 1983, 1984). The 
energy form (1) can be considered as the action of a dynamical system, so that each 
configuration { U,} which is a solution of the extremalisation equations of ( 1 )  can be 
associated with a trajectory of a map. 

The extremalisation equations of (1) are 

a@( { u,})/au, = - U,+ I - U, - I + 2u, + K sin uJ + ( - 1 )I E = 0. ( 3 )  

e, = U, ( 4 0 )  

r, = U, - U,-, (46) 

I,+,=I,+Ksin8,+(-l)-’E ( 5 7 )  

e,,, = e, + I,,, . ( 5 6 )  
When the electric field E is zero, equations ( 5 )  yield exactly the ‘standard map’, i.e. 
the discretised Hamilton equations of the pendulum. 

With the angle variable modulo 27r 

and its conjugate variable (action) 

equation ( 3 )  can be written again as 

A solution of (3) can be obtained by alternate applications of the map T+ 
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and of the map T -  

( I * , ,  & , I =  T-(12,-I, @ * , - I )  

defined by 

I ,  = + K sin 6,,-, - E 

e2, = + I , .  

T’ and T -  are two dimensional, invertible, frontier and area preserving maps of the 
cylinder I x 6 onto itself as the standard map, which is obtained for E = O .  Their 
product T = T-T’ generates trajectories ( I , ,  0,) which correspond to the configur- 
ations { u Z l }  of the even sublattice 

12,+2 = 

O z l i z =  &,+21?, + 2 K  sin 02,+ E +  K sin(@,,+ K sin 02, + E + I ? , ) .  

+ K sin 02, - E + K sin( + K sin 02, + E + I*,)  ( 8 ~ )  

(8b) 

Let us note that the change of variables 

1: = I ,  + ( - 1 ) “ E / 2  

6 : =  6,  +( -1 )“E /4  

which leaves the ‘Laplacian’ invariant transforms equations (5)  into 

Iitl= I ; + K  sin[O~-(-l)’E/4] ( l oa )  

e;+, = e ;+  I ; + ~ .  ( l o b )  

The free energy is then 

which is identical with the normal FK model with the even and odd sublattice seeing 
a potential shifted by E / 2 .  In Aubry er al (1985) E = 27r. 

The trajectories of transformation (10) are unchanged by changing E into E + 87.  
In fact, the map (10) is invariant by a change of the electric field E into E +47r and 
a change of the variable 6; into 6 ;  + T.  In  addition, changing E into - E  is equivalent 
to exchanging the role of the even and odd sublattices. Therefore, it is sufficient to 
study the transition by breaking of analyticity for an  electric field E in the symmetric 
interval [0,47r] only. 

By definition a twist map has the property that the image of a vertical straight line 
x =  6, where 6 is an arbitrary constant, is a graph which means that the equation of 
this line can be put under the form y =  g(x) .  When K < 2  equation (8b)  shows that 
@2,+Z is a monotonic increasing function of I , .  Then for fixed O,,, I , ,  is a univalued 
function of &,+, which implies that 12,+? can also be written as a univalued function 
for 02,+?. This property proves that T fulfils the twist condition for K < 2 .  

Therefore when K < 2, the Kolmogorov-Arnol’d-Moser ( K A M )  theorem (Moser 
1973, Lichtenberg and Lieberman 1983) applies for the map T. It predicts that for 
most irrational 6, there exists a non-zero critical value K,(E,  c ) ,  such that for K < 
K,( E, C), the dynamical system is almost integrable and there exists an  invariant torus 
on the cylinder I x 6. Note that, strictly speaking, the K A M  theorem gives an upper 
bound for K which is very small, but in practice numerical observations indicate that 
it generally applies much beyond this theoretical value. 
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The trajectories of the associated map (6) and ( 7 )  correspond to stationary configur- 
ations of model ( 1 )  having extrema1 energy. The subset of these trajectories which 
correspond to the ground states of model ( 1 )  (which have minimum energy) can be 
studied using the same methods as in Aubry and  AndrC (1980), Aubry and  Le Daeron 
(1983) and Aubry (1983, 1984, 1986) but for each sublattice separately. It suffices to 
note that 

( i )  the fundamental lemma also applies to the minimum energy configurations of 
model ( l ) ,  

( i i )  the set of minimum energy configurations {U,} is invariant by the Abelian group 
of transformations, the generators of which are 

gz(b,)) = Iu,+z> ( 1 2 a )  

go({u,H ={U, +2n}.  ( 1 2 6 )  

Then the same theorems hold for each sublattice as in the case where there exists 
only one sublattice ( F K  model). In particular, for each irrational number 5 and electric 
field E ,  there exists two hull functions f l ( x )  and f i ( x )  which are monotonic increasing 
and either left-continuous ( f ; ( x )  and f ; ( x ) )  or right-continuous ( f : ( x )  and f 2 f ( x ) )  
and such that the functions g l ( x )  = f l ( x ) - x  and g2(x) = f i ( x ) - x  are 2n periodic. 
Then, for any incommensurate ground state with incommensurability ratio 

there exists a determination for the couple of hull functions which are both right- 
continuous ( f :  and f : )  or  left-continuous (f; and f ; )  and a phase (Y such that 

uz, =f1(2j l+a)  ( 1 4 a )  

h , + 1  = f z ( ( 2 j + l ) l + ( Y )  ( 1 4 6 )  

where 1 is the atomic mean distance between consecutive atoms. When there exists a 
K A M  torus for the associated map T with rotation number 5, the same theorems as for 
the F K  model (Aubry 1983, 1986) apply: they prove that the trajectories of this K A M  

torus correspond to the incommensurate ground states with incommensurability ratio 
i and vice versa. 

As for the FK model, let us recall and  emphasise that, although the transition by 
breaking of analyticity of the incommensurate ground states of model (1) corresponds 
to the breaking of the associated torus, it does not imply that the incommensurate 
ground state becomes chaotic. In fact, it becomes defectible, while remaining incom- 
mensurate. The reader is referred to our previous papers or to the review paper (Aubry 
1986) for more detailed explanations. 

3. Study of the transition by breaking of analyticity as a function of the electric field 

3.1. Method 

Our analysis is a variation of the method Greene used (Greene 1979) for the standard 
map. He has shown in this case that the study of the breaking of a K A M  torus having 
an irrational rotation number i when the chaos constant K increases can be done by 
analysing the behaviour of the neighbouring periodic cycles having for rotation number 
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5 ,  = r , / s , , ,  the rational truncations (or convergents) of the continued fraction expansion 
of 5 (see, for example, Hardy and Wright 1979) 

1 
j = a , +  

1 
a,  + 

1 
a2 + 

1 . . .+ 
a , + .  . . 

= lim r,/s,. 
n-nf 

The sequence of integers a, is unique and determines recursively the principal 
convergents 5, = rn / sn  by the well known formula 

ln = r , , /sn = ( w , - I  + r n - J / ( w , - ,  +s,-A (15b) 

with the initial conditions lo= a,/l  and l1 = (aoa, + l ) / a , .  
We mostly studied in this paper the inverse golden mean 5 = T-’= (A- 1)/2, for 

which a, = 0 and aJ = 1 for all j # 0. This number can be considered the ‘most irrational’ 
because its continued fraction expansion converges most slowly to its limit and the 
problem of small denominators, with it, is minimal. It has the following principal 
convergents r , /  s, : 

l1=0 s,=; s,=; 5 - 3  4 - 5  5 - 5  5 - 8  5 - L  6 - 1 3  . . .  . (16) 

For the standard map, when K increases, the invariant tori are gradually destabilised 
and chaotic trajectories can reach increasingly large regions of phase space. There is 
good evidence (see, for instance, Lichtenberg and Lieberman (1983 p 217)) that the 
last torus to live is the ‘golden’ torus for which the critical value of K is K ,  = 0.961 536 
in the limit n + 00. Then ‘connected stochasticity’ takes place. 

We use a variation of Greene’s method to study its destabilisation when K increases 
in the modified mapping ( 1 )  as a function of the electric field. 

For a given 5, and a given electric field E, we find the commensurate ground state, 
the commensurability ratio of which is 1/2a = 5, = r , / s , , .  The associated trajectory by 
transformation T is a periodic cycle with period s,. This ground state can be found 
using a finite system with periodic boundary conditions 

u2 y,, = uo + 47rr,. (17) 

Then let M be the product of the Jacobian matrices of T along the periodic cycle 
of rotation number 5, = r,/s,: 

1 K cos 6, 

The residue R of this periodic cycle is by definition 

R =2(2-Tr(M)) (18b) 

and the trajectory is stable when IRI <0.25 (Greene’s criterion). 
Periodic cycles corresponding to physically stable configurations (ground states) 

have been shown to be necessarily hyperbolic without reflection (Aubry 1983, 1984) 
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(in other words, the physical system and the dynamical system have inverse stabilities), 
their residue is then negative or zero. For small values of K ,  R is close to zero, then 
its modulus increases with K.  When s, is large (and in the incommensurate limit), 
the breakdown of the periodic cycle occurs with a very sharp transition for R = -0.25. 
When s, is smaller the behaviour is a crossover one and  the observed variation of R 
is much smoother. For reasons of continuity the curves K J E ,  5,) are calculated for 
this same value R = -0.25. When n goes to CO, this crossover value converges to the 
critical value K,( E, 5) at which the transition by breaking of analyticity occurs. 

The determination of the commensurate ground state with the boundary condition 
(17) is done by a combination of the gradient method (already used in Peyrard and 
Aubry (1983)) and of a Newton method (Shenker and Kadanoff 1982, Coppersmith 
and Fisher 1983) as in de  Seze and Aubry (1984). 

The gradient method consists in performing the integration of the equation 

d U, ( 7 )/ d 7 = -a@ ( { U, ( 7 1) I /  3 U, (19) 

where T is a continuous variable. For T going to infinity, U,( T )  converges to a stationary 
solution which is T independent and fulfils a@({u, } ) /au ,  = O  which is equation (3). 
Starting from an initial configuration { U , }  fulfi!ling the boundary conditions (17), the 
final state also fulfils the same boundary conditions and corresponds to the 'relaxed' 
initial state. 

By contrast with the original Greene method which yields stable and unstable 
configurations as well, this method has the advantage that the limit configuration which 
is obtained is necessarily one of the metastable conjgurations of the dynamical system 
which are the only ones having physical interest. If the initial configuration has been 
well chosen, it is the physical ground state. However, the limit configuration can be 
also chaotic (Peyrard and  Aubry 1983) when the initial state is chosen at random. 

However, since the numerical convergence of the gradient method is rather slow, 
especially in the vicinity of the crossover, it is more efficient to only start the numerical 
procedure with this method in order to get a rough but reasonable approximation of 
the solution of (31, and to terminate the convergence with a Newton method consisting 
in solving recursively the system of linearised equations 

This second method does not necessarily converge to a metastable configuration 
but since it is started on an  initial state which is rather close to a metastable configur- 
ation, it will converge accurately to this configuration. In  practice, after a few iterations, 
the sequence of configurations {U:"'} converges to a solution of (3) with an accuracy 
of io-' at  least. 

A good choice of the initial configuration {U:"'} for finding the ground state of the 
F K  model is u jo '= j l+a  which corresponds to the unmodulated chain. In model (1) 
where there exists two different sublattices, the existence of two different hull functions 
f, and f2 allows one to show that an appropriate initial configuration {U:"} is given by 

(21) 
where 8"' is some unknown initial relative phase shift between the even and odd 
sublattices. 

The limit configuration may depend on this phase shift 8'"'. This result is easily 
understood because the initial phase shift 8'"' determines the wells of the periodic 

u y  = j l +  (Y + (-1 Y8'0'/2 
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potential V ( x )  above which the atoms are initially located. If  the amplitude of V ( x )  
is large enough, the atoms may always stay in their initial well. However, when is 
close to an irrational number and K small enough, the limit is unique (apart from a 
global translation of the chain). For the FK model, we proved that this situation occurs 
for the analytic incommensurate structures. This proof extends to the present model 
(1). This property has been called ‘undefectibility’ (Aubry 1978). 

In our numerical calculations, we vary the initial phase shift. When we find several 
limit configurations, the minimisation of the energy ( 1) allows one to determine the 
ground state. This situation corresponds to first-order transitions in the commensurate 
cases as are shown below. 

3.2. Results 

We study the generation of K J E ,  5). 
(i) For the first convergents of 7F1= (&- 1)/2 

for which the results of the numerical calculations are shown in figures 2-7. 

with ab=0, ai = 1, a4=2,  a ; =  1, a & = 3  and convergents 
(ii) For an irrational number 5’ with a continued fraction expansion beginning 

L i = f  r ; = ;  r ;=$ ,77=; 

for which the results are in figures 3 and 4 and also figures 8 and 9. 
The results clearly show the following. 
( i )  K,( E, r , / s , )  defined by R = -0.25 is a continuous curve having s, discontinuities 

of its derivative for E in the interval [0,47~[. At these cusps the two parts of the curve 

6 = O  

t 
0 L 8 12 

E 

Figure2 & ( E )  (defined by R = -0.25), see text) for J2 =$. 0, Ground states of the 
physical system; X, metastable states of the physical system. 



Incommensurate structures in an electric jield 

1 
I 
I 

P 
1.0 j 

1 
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0.2 1 i 
I 

I I I 1 
I I I I I  I I I I 1  I I 

0 E 2  r r 4  6 2rr 8 3n 10 yJ 12 4n 14 
3 

E 3 

Figure 3. As figure 2 for l3 = 5. The drawing explains the mechanism of generation of the 
curve K , ( E ) ,  0, states having S = 0 or 1; x ,  S = f ;  3, S = 3 ( S  is defined in (26), see text). 
0 indicate the first-order transitions between ground states of different polarisation S for 
values of R ditferent from -0.25. 

0 
0 

0 
0 

0 
0 

0 
0 

01 I I I I I I 
0.4 0.8 1.2 1.6 

E 

Figure4. Detail of figure 3: K c ( € )  is composed of the points corresponding to the states 
of minimum energy: it has a 'cusp' at the intersection of the 6 = 0 and 6 = curve. 

intersect at an  angle which is finite when s, is small and goes to zero when n goes to 
infinity. The cusps are concentrated in two regions: around E = 0 (or 477) and E = 277 

and there is a numerical indication that they remain there when n increases since the 
width of the large gap between these regions tends rapidly to a finite value. 



4882 F Axel and S Aubry 

1 . 2 r  

I I I 1 I I 
0 2 L 6 8 10 12 1 4  

E 

Figure 5. K,( E )  for t4 = 4: 0,  states of minimum energy; X ,  metastable states 

1 . o  

0 . 8  

0 . 6  

K 

0. 4 

0 .2  

0 

~~ 

2 4 6 0 10 12 14 
E 

Figure 6. As figure 5 for t5 = $ 
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0.2 I 
1 I I I I I 1 

L a 10 12 14 
6 E  0 2 

Figure 7. As figure 5 for l6 = ft.  

(ii) The ‘budding’ of the cusps is completely determined by the continued fraction 
expansion sequence { a j } .  The recurrence relation (156) s, = a,s,-,+s,-, with so= 1 
and s1 = a ,  describes in a natural fashion the transformation which maps K,(E, r , / s , )  
into K,( E, r , ,+ l / s ,+ l )  for the two groups of cusps around E = 0 and E = 271. Figure 8, 
for example, has si = 4 cusps, of which rJ = 3 around E = 0. Then figure 9 shows 
s i  = 15 cusps of which r: = 11 around E = 0. In the case of the golden sequence, r, 
and s, are among the Fibonacci numbers. 

(iii) The calculations described in figures 2-9 give good evidence for the mechanism 
of formation and the properties of &(E, 4‘). (They were not carried out for higher 
values of n which would have required very large amounts of CPU time.) Hence in 
the limit n +CO, &(E, 5 )  has a countable number of cusps which become dense on a 
Cantor set. 

4. Polarisation and phase diagram 

The presence of the (-l)’Euj term in (1) results in the differentiation of the odd and 
even sublattice of the chain. The first length which is characteristic of model (1) is 
the average distance between atoms I which is the conjugate variable to the tensile 
force p and yields the rotation number 6: 

l=-=---z(e. I l l  - e j ) ,  
27r 277 N j ’ + I  
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I , I I 1 I 
0 2 4 8 10 12 14 

6 E  

Figure 8. As figure 5 for (; = a .  
1.2- 

1 . 0 1  

0.2. -  

:---I 

C 2 4 6 8 10 12 14 
E 

Figure 9. As figure 5 for i; = 6. 

The response per atom to the electric field at fixed 5 is the conjugate variable to 
E and the second characteristic length of the model or, in convenient units, the phase 
difference 6’ between the two sublattice modulations 
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Because of equation (3 ) ,  this polarisation is equal to 
E K N / 2  

6'( E )  = --+- sin U*,. 
2 2 N , = i  

I n  formula ( 2 6 a )  of Aubry et a1 (1985), it was shown for model (1) with a piecewise 
parabolic potential having a phase difference of 7~ for the odd and  even sublattice that 
the polarisation P is the sum of a linear part 

and of a non-linear part 

6 
a p .  ==- 

4 + h  nlin 

where 

and 

m, = Int(u,/27~).  (26b)  
6 shows locking to the lattice after a 'subcommensurability' condition and, when 5 is 
irrational, is a devil's staircase (formula (45) in Aubry et a1 (1985)). This condition, 
in our model, for a piecewise parabolic potential or a cosine potential at high K would 
be 

2 q + 1  
p - z = S  

with p and q some integers. 
The configuration of each phase is then characterised by the distribution of the 

integers m, which label the wells where the atoms are located. It has been shown that 
these integers are given by the formula 

m, = Int(j l /2+ y+(-1),8/2) (28) 

where y corresponds to the average phase of the modulation and where 6 describes 
the relative phase shift of the modulations of the even sublattice and of the odd 
sublattice. Since the energy of the chain is independent of y, it is arbitrary and, for 
convenience, it can be chosen equal to -6/2. This sequence {m,} discontinuously 
changes when j1/2+(-1+(-1) ')6/2 becomes an integer q for some value of j = p  
which is the subcommensurability condition (27).  Then, the corresponding configur- 
ation { U,} also undergoes a discontinuous variation. 

When 5 = r / s  is rational (with r and s two irreducible integers), the devil's staircase 
S ( E )  becomes a harmless staircase. The discontinuities of the sequence {m,} are 
obtained for 6 given by (27 )  for some integers p and q. This sequence is given by 
6 = m / s  when r is even and  by 6 = (2m + 1)/(2s)  when r is odd ( m  is an arbitrary 
integer). 

To substantiate the analogy, between the high K cosine potential and  the piecewise 
parabola potential situations, we calculated for K = 1.9 and j 3  =:, 6 ( E )  as defined 
here by (26 )  and the energies of the possible configurations of the chain. The results 
are shown in figures 10 and 11. They show the following. 
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Figure 10. S ( E )  for l3 =; and K = 1.9. The crosses indicate the polarisation of the ground 
state. The curve is a ‘harmless’ staircase. 

0.3 i 

0 2 4 6 a 10 12 
E 

Figure 11. The free energy of model ( 1 )  with a cosine potential as a function of E for 
c3 = 3 and K = 1.9. The downward arrows indicate the first-order transitions (compare with 
figures 10 and 12). The following describe the cosine potential wells to specify the chain 
configuration {m,}: x ,  000111; 0, 001111; 0, 001011; +, 001021. 
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Figure 12. The phase diagram of model (1)  with a cosine potential for g, = f (see text). 
The first-order transition lines extend down to the K = 0 axis. Compare with figure 3. 

( i )  The same ‘harmless’ staircase behaviour is found in the rational case for S ( E )  
in model (1) in the high K limit. 

(ii) There are first-order transitions between states of different polarisations at 
constant K since the free energy curve has a discontinuity in its slope just at the value 
of E at which the stair in S ( E )  happens (compare figures 10 and  11). Let us now go 
back to figures 2 and 3 which show how K,( E )  for l3 = $ (and more generally 5 = r / s )  
is generated by s parabolic-like curves having constant polarisation (defined after ( 2 6 ) )  
which intersect at an angle. Calculation of the free energy shows that the ground states 
lie on the lower part of the curve, indicated by a continuous line. The ‘cusps’ in K,( E )  
(for R = - 0 . 2 5 )  on figure 3 will line up  on the three curves of figure 12 when R is 
varied. They correspond to the s discontinuities in S ( E )  of figure 10 (the plateau 
edges) and to changes of slope of the free energy on figure 11, indicating first-order 
transition lines which extend down to the K = O  axis in the rational case. 

When the order s of the rational 5 = r / s  increases the number s of first-order lines 
also increases, and in the limit s+m and 4‘ irrational, K , ( E ,  {) as shown above is 
composed of a countable number of cusps. When K < K , (  E, l ) ,  the limit configuration 
is an incommensurate ‘sliding’ ground state which can be described with an analytic 
hull function. Therefore, in the region R of the parameter space ( E ,  K )  which is 
determined by the condition K < K,(E, l ) ,  it can be easily proven that the physical 
ground state is unique. As a result, no line corresponding to a discontinuity of the 
ground state configuration can exist in this analytic region R. The polarisation 6 (  E, 5 )  
is then necessarily a smooth function of the electric field while E remains in this region. 

On the contrary, outside R,  in the region determined by K > &(E, J ) ,  there 
exist many metastable configurations besides the ground state and the first-order 
transition lines which die out at the cusps separating regions of constant polarisation 
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6 where the chain is locked to the lattice. It has been shown in Aubry er a1 (1985) 
that, for a piecewise parabolic potential, the polarisation curve is the sum of a smooth 
analytic part and a devil’s staircase. This devil’s staircase component still exists in the 
region K > K,( E, 5) for the cosine potential model we study here. 

Indeed, the limit of the set of s first-order lines observed in the commensurate case 
is superior to a set which has the topology of the product of a one-dimensional Cantor 
set and of a continuous line. It corresponds to the edges of the plateaux of the devil’s 
staircase components of & ( E )  at fixed 5. In the non-analytic region, for the incom- 
mensurate ground states with incommensurability ratio 5, there exists infinitely many 
such critical quasi-first-order lines which terminate at the critical curve corresponding 
to the curve K = K,( E, 5) and  each terminating point of a critical line is a cusp of the 
curve K = K J E ,  6 ) .  

5. Conclusion 

When the incommensurability ratio 5 is fixed at an irrational number, our model 
exhibits a phase diagram in the parameter space formed by the electric field E and 
the coupling constant K to the lattice that has infinitely many phases. These phases 
are separated by infinitely many transition lines which can be interpreted as first-order 
lines with a discontinuity of the physical quantities which is infinitely small at the 
macroscopic scale but does exist for the microscopic configuration. 

The new interesting feature which is observed here is that this phase diagram also 
exhibits an  infinite number of critical points. These critical points are the terminating 
points of the quasi-first-order lines at the second-order critical line K J E ,  5) of the 
transition by breaking of analyticity of this model. This critical line exhibits infinitely 
many cusps at  each of these critical points. So this model provides the first example 
which generalises the concept of critical point of the standard theory of phase transitions 
to a situation where the phase diagram exhibits devil’s staircases. 
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